Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(9)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37760002

RESUMO

Cocoa shell is a by-product of cocoa manufacturing. We obtained an aqueous extract (CSE) rich in polyphenols and methylxanthines with antioxidant and vasodilatory properties. We aimed to evaluate the effects of CSE supplementation in aged hypertensive rats on blood pressure and the mechanism implicated. Eighteen-month-old male and female rats exposed to undernutrition during the fetal period who developed hypertension, with a milder form in females, were used (MUN rats). Systolic blood pressure (SBP; tail-cuff plethysmography) and a blood sample were obtained before (basal) and after CSE supplementation (250 mg/kg; 2 weeks, 5 days/week). Plasma SOD, catalase activity, GSH, carbonyls, and lipid peroxidation were assessed (spectrophotometry). In hearts and aortas from supplemented and non-supplemented age-matched rats, we evaluated the protein expression of SOD-2, catalase, HO-1, UCP-2, total and phosphorylated Nrf2 and e-NOS (Western blot), and aorta media thickness (confocal microscopy). MUN males had higher SBP compared with females, which was reduced via CSE supplementation with a significant difference for group, sex, and interaction effect. After supplementation with plasma, GSH, but not catalase or SOD, was elevated in males and females. Compared with non-supplemented rats, CSE-supplemented males and females exhibited increased aorta e-NOS and Nrf2 protein expression and cardiac phosphorylated-Nrf2, without changes in SOD-2, catalase, HO-1, or UCP-2 in cardiovascular tissues or aorta remodeling. In conclusion, CSE supplementation induces antihypertensive actions related to the upregulation of e-NOS and Nrf2 expression and GSH elevation and a possible direct antioxidant effect of CSE bioactive components. Two weeks of supplementation may be insufficient to increase antioxidant enzyme expression.

2.
Food Res Int ; 172: 113116, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37689881

RESUMO

The coffee pulp, a by-product of the coffee industry, contains a high concentration of phenolic compounds and caffeine. Simulated gastrointestinal digestion may influence these active compounds' bioaccessibility, bioavailability, and bioactivity. Understanding the impact of the digestive metabolism on the coffee pulp's phenolic composition and its effect on cellular oxidative stress biomarkers is essential. In this study, we evaluated the influence of in vitro gastrointestinal digestion of the coffee pulp flour (CPF) and extract (CPE) on their phenolic profile, radical scavenging capacity, cellular antioxidant activity, and cytoprotective properties in intestinal epithelial (IEC-6) and hepatic (HepG2) cells. The CPF and the CPE contained a high amount of caffeine and phenolic compounds, predominantly phenolic acids (3',4'-dihydroxycinnamoylquinic and 3,4-dihydroxybenzoic acids) and flavonoids (3,3',4',5,7-pentahydroxyflavone derivatives). Simulated digestion resulted in increased antioxidant capacity, and both the CPF and the CPE demonstrated free radical scavenging abilities even after in vitro digestion. The CPF and the CPE did not induce cytotoxicity in intestinal and hepatic cells, and both matrices exhibited the ability to scavenge intracellular reactive oxygen species. The coffee pulp treatments prevented the decrease of glutathione, thiol groups, and superoxide dismutase and catalase enzymatic activities evoked by tert-butyl hydroperoxide elicitation in IEC-6 and HepG2 cells. Our findings suggest that the coffee pulp could be used as a potent food ingredient for preventing cellular oxidative stress due to its high content of antioxidant compounds.


Assuntos
Antioxidantes , Cafeína , Antioxidantes/farmacologia , Fenóis/farmacologia , Farinha , Digestão
3.
Foods ; 12(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37509800

RESUMO

Coffee and cocoa manufacturing produces large amounts of waste. Generated by-products contain bioactive compounds with antioxidant and anti-inflammatory properties, suitable for treating metabolic syndrome (MetS). We aimed to compare the efficacy of aqueous extracts and flours from coffee pulp (CfPulp-E, CfPulp-F) and cocoa shell (CcShell-E, CcShell-F) to ameliorate MetS alterations induced by a high-fat diet (HFD). Bioactive component content was assessed by HPLC/MS. C57BL/6 female mice were fed for 6 weeks with HFD followed by 6 weeks with HFD plus supplementation with one of the ingredients (500 mg/kg/day, 5 days/week), and compared to non-supplemented HFD and Control group fed with regular chow. Body weight, adipocyte size and browning (Mitotracker, confocal microscopy), plasma glycemia (basal, glucose tolerance test-area under the curve, GTT-AUC), lipid profile, and leptin were compared between groups. Cocoa shell ingredients had mainly caffeine, theobromine, protocatechuic acid, and flavan-3-ols. Coffee pulp showed a high content in caffeine, protocatechuic, and chlorogenic acids. Compared to Control mice, HFD group showed alterations in all parameters. Compared to HFD, CcShell-F significantly reduced adipocyte size, increased browning and high-density lipoprotein cholesterol (HDL), and normalized basal glycemia, while CcShell-E only increased HDL. Both coffee pulp ingredients normalized adipocyte size, basal glycemia, and GTT-AUC. Additionally, CfPulp-E improved hyperleptinemia, reduced triglycerides, and slowed weight gain, and CfPulp-F increased HDL. In conclusion, coffee pulp ingredients showed a better efficacy against MetS, likely due to the synergic effect of caffeine, protocatechuic, and chlorogenic acids. Since coffee pulp is already approved as a food ingredient, this by-product could be used in humans to treat obesity-related MetS alterations.

4.
Antioxidants (Basel) ; 12(5)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237874

RESUMO

The cocoa industry generates a considerable quantity of cocoa shell, a by-product with high levels of methylxanthines and phenolic compounds. Nevertheless, the digestion process can extensively modify these compounds' bioaccessibility, bioavailability, and bioactivity as a consequence of their transformation. Hence, this work's objective was to assess the influence of simulated gastrointestinal digestion on the concentration of phenolic compounds found in the cocoa shell flour (CSF) and the cocoa shell extract (CSE), as well as to investigate their radical scavenging capacity and antioxidant activity in both intestinal epithelial (IEC-6) and hepatic (HepG2) cells. The CSF and the CSE exhibited a high amount of methylxanthines (theobromine and caffeine) and phenolic compounds, mainly gallic acid and (+)-catechin, which persisted through the course of the simulated digestion. Gastrointestinal digestion increased the antioxidant capacity of the CSF and the CSE, which also displayed free radical scavenging capacity during the simulated digestion. Neither the CSF nor the CSE exhibited cytotoxicity in intestinal epithelial (IEC-6) or hepatic (HepG2) cells. Moreover, they effectively counteracted oxidative stress triggered by tert-butyl hydroperoxide (t-BHP) while preventing the decline of glutathione, thiol groups, superoxide dismutase, and catalase activities in both cell lines. Our study suggests that the cocoa shell may serve as a functional food ingredient for promoting health, owing to its rich concentration of antioxidant compounds that could support combating the cellular oxidative stress associated with chronic disease development.

5.
Curr Res Food Sci ; 6: 100516, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215741

RESUMO

The influence of different extrusion conditions on the cocoa shell (CS) dietary fiber, phenolic compounds, and antioxidant and functional properties was evaluated. Extrusion produced losses in the CS dietary fiber (3-26%), especially in the insoluble fraction, being more accentuated at higher temperatures (160 °C) and lower moisture feed (15-20%). The soluble fiber fraction significantly increased at 135 °C because of the solubilization of galactose- and glucose-containing insoluble polysaccharides. The extruded CS treated at 160 °C-25% of feed moisture showed the highest increase of total (27%) and free (58%) phenolic compounds, accompanied by an increase of indirect (10%) and direct (77%) antioxidant capacity. However, more promising results relative to the phenolic compounds' bioaccessibility after in vitro simulated digestion were observed for 135°C-15% of feed moisture extrusion conditions. The CS' physicochemical and techno-functional properties were affected by extrusion, producing extrudates with higher bulk density, a diminished capacity to hold oil (22-28%) and water (18-65%), and improved swelling properties (14-35%). The extruded CS exhibited increased glucose adsorption capacity (up to 2.1-fold, at 135 °C-15% of feed moisture) and α-amylase in vitro inhibitory capacity (29-54%), accompanied by an increase in their glucose diffusion delaying ability (73-91%) and their starch digestion retardation capacity (up to 2.8-fold, at 135 °C-15% of feed moisture). Moreover, the extruded CS preserved its cholesterol and bile salts binding capacity and pancreatic lipase inhibitory properties. These findings generated knowledge of the CS valorization through extrusion to produce foods rich in dietary fiber with improved health-promoting properties due to the extrusion-triggered fiber solubilization.

6.
Antioxidants (Basel) ; 12(4)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37107354

RESUMO

Grape pomace (GP) is a winemaking by-product particularly rich in (poly)phenols and dietary fiber, which are the main active compounds responsible for its health-promoting effects. These components and their metabolites generated at the intestinal level have been shown to play an important role in promoting health locally and systemically. This review focuses on the potential bioactivities of GP in the intestinal environment, which is the primary site of interaction for food components and their biological activities. These mechanisms include (i) regulation of nutrient digestion and absorption (GP has been shown to inhibit enzymes such as α-amylase and α-glucosidase, protease, and lipase, which can help to reduce blood glucose and lipid levels, and to modulate the expression of intestinal transporters, which can also help to regulate nutrient absorption); (ii) modulation of gut hormone levels and satiety (GP stimulates GLP-1, PYY, CCK, ghrelin, and GIP release, which can help to regulate appetite and satiety); (iii) reinforcement of gut morphology (including the crypt-villi structures, which can improve nutrient absorption and protect against intestinal damage); (iv) protection of intestinal barrier integrity (through tight junctions and paracellular transport); (v) modulation of inflammation and oxidative stress triggered by NF-kB and Nrf2 signaling pathways; and (vi) impact on gut microbiota composition and functionality (leading to increased production of SCFAs and decreased production of LPS). The overall effect of GP within the gut environment reinforces the intestinal function as the first line of defense against multiple disorders, including those impacting cardiometabolic health. Future research on GP's health-promoting properties should consider connections between the gut and other organs, including the gut-heart axis, gut-brain axis, gut-skin axis, and oral-gut axis. Further exploration of these connections, including more human studies, will solidify GP's role as a cardiometabolic health-promoting ingredient and contribute to the prevention and management of cardiovascular diseases.

7.
Curr Res Food Sci ; 6: 100475, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36935849

RESUMO

Coffee pulp is an underutilized by-product of coffee industrial production rich in bioactive compounds such as phenolic compounds, caffeine, and dietary fiber. The widely known antioxidant, anti-inflammatory, anti-aging, antimicrobial and hepatoprotective health-promoting properties attributed to mentioned compounds enhance the use of coffee pulp as a bioactive food ingredient. Furthermore, the application of green sustainable extraction techniques pursuing highly efficient and selective extraction processes promotes this by-product exploitation in food science. Hence, this review gathers the available information relative to the impact of the extraction processes on the bioactive compound's recovery from coffee pulp, providing an overview of the most recent advances. An in-depth comparison workout between conventional and alternative extraction methods was performed to identify the most suitable techniques for coffee pulp valorization as functional ingredient until date. A critical discussion focused on advantages and drawbacks of the extraction methods applied to coffee pulp was included together a prospective of emerging extraction techniques.

8.
Front Endocrinol (Lausanne) ; 14: 1090499, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936154

RESUMO

Introduction: Preterm birth is associated with altered growth patterns and an increased risk of cardiometabolic diseases, with breast milk (BM) being a counteracting factor. Preterm infants also show alterations in adipokines and gut hormones influencing appetite and metabolism. Since these hormones are present in BM, it is possible that their levels may equilibrate deficiencies improving infant growth. We aimed to assess 1) the BM levels of ghrelin, resistin, leptin, insulin, peptide YY, and the gastrointestinal peptide in women with preterm and term labor; 2) the relationship between BM hormones and neonatal growth; and 3) the influence of maternal body composition and diet on these BM hormones. Methods: BM from 48 women (30 term and 18 preterm labor) was collected at days 7, 14, and 28 of lactation. Maternal body composition was evaluated by bioimpedance, and neonate anthropometric parameters were collected from medical records. The maternal dietary pattern was assessed by a 72-h dietary recall at days 7 and 28 of lactation. BM hormones were analyzed by the U-Plex Ultra-sensitive method. Data were analyzed using linear regression models. BM from women with preterm labor had lower ghrelin levels, with the other hormones being significantly higher compared to women with term delivery. Results: In premature infants, growth was positively associated with BM ghrelin, while, in term infants, it was positively associated with insulin and negatively with peptide YY. In the first week of lactation, women with preterm labor had higher body fat compared to women with term labor. In this group, ghrelin levels were positively associated with maternal body fat and with fiber and protein intake. In women with term labor, no associations between anthropometric parameters and BM hormones were found, and fiber intake was negatively associated with peptide YY. Discussion: Preterm labor is a factor influencing the levels of BM adipokines and gut hormones, with BM ghrelin being a relevant hormone for premature infant growth. Since ghrelin is lower in BM from women with preterm labor and the levels are associated with maternal fat storage and some dietary components, our data support the importance to monitor diet and body composition in women who gave birth prematurely to improve the BM hormonal status.


Assuntos
Leite Humano , Nascimento Prematuro , Lactente , Humanos , Recém-Nascido , Feminino , Leite Humano/química , Grelina , Peptídeo YY , Recém-Nascido Prematuro , Lactação , Composição Corporal , Dieta , Insulina
9.
Animals (Basel) ; 13(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36899762

RESUMO

The aim of this study was to evaluate the effect of a phytomelatonin-rich diet, including by-products from the food industry, on ram sperm quality and seminal plasma composition. Melatonin content in several by-products before and after in vitro ruminal and abomasal digestion was determined by HPLC-ESI-MS/MS. Finally, 20% of a mix of grape pulp with pomegranate and tomato pomaces was included in the rams' diet, constituting the phytomelatonin-rich diet. Feeding the rams with this diet resulted in an increase in seminal plasma melatonin levels compared with the control group (commercial diet) in the third month of the study. In addition, percentages higher than those in the control group of morphologically normal viable spermatozoa with a low content of reactive oxygen species were observed from the second month onwards. However, the antioxidant effect does not seem to be exerted through the modulation of the antioxidant enzymes since the analysis of the activities of catalase, glutathione reductase and glutathione peroxidase in seminal plasma revealed no significant differences between the two experimental groups. In conclusion, this study reveals, for the first time, that a phytomelatonin-rich diet can improve seminal characteristics in rams.

10.
Food Res Int ; 162(Pt B): 112117, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36461351

RESUMO

The objective of this study was to assess how in vitro gastrointestinal digestion influenced the bioaccessibility and potential bioavailability of phenolic compounds and methylxanthines in thecocoa shell (CS) in the form of flour (CSF) and aqueous extract (CSE). To comprehend how these phytochemicals behaved during gastrointestinal digestion, we also modeled in silico the colonic microbial biotransformation of the phenolic compounds in the CS. Different groups of phenolic compounds (mainly gallic andprotocatechuic acids, and catechin) and methylxanthines (theobromine and caffeine)could be found in the CS. Methylxanthines and phenolic compounds were released differently during gastrointestinal digestion. Whereas digestion triggered the release of hydroxybenzoic acids (67-73%) and flavan-3-ols (73-88%) during the intestinal phase, it also caused the degradation of flavonols and flavones. Besides, the release of phytochemicals was significantly influenced by the CS matrix type. Phenolic compounds were protected by the CSF matrix. Phenolic acids from CSF were more bioaccessible in the intestinal (1.2-fold, p < 0.05) and colonic (1.3-fold, p < 0.05) phases than those from the CSE. Methylxanthines were also more bioaccessible in the intestinal (1.8-fold, p < 0.01) and colonic phases (1.3-fold, p < 0.001) and bioavailable (1.8-fold, p < 0.001) in the CSF. Colonic metabolism demonstrated that the gut microbiota could biotransform non-absorbed phenolic compounds into other lower molecular weight and more bioavailable metabolites. These findings support the CS's potential as a source of bioaccessible, bioavailable, and active phytochemicals.


Assuntos
Microbioma Gastrointestinal , Fenóis , Disponibilidade Biológica , Polifenóis , Colo , Ácido Gálico
11.
Antioxidants (Basel) ; 11(9)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36139892

RESUMO

Numerous residues, such as the coffee pulp, are generated throughout coffee processing. This by-product is a source of antioxidant phytochemicals, including phenolic compounds and caffeine. However, the antioxidant properties of the phenolic compounds from the coffee pulp are physiologically limited to their bioaccessibility, bioavailability, and biotransformation occurring during gastrointestinal digestion. Hence, this study explored the phenolic and caffeine profile in the coffee pulp flour (CPF) and extract (CPE), their intestinal bioaccessibility through in vitro digestion, and their potential bioavailability and colonic metabolism using in silico models. The CPE exhibited a higher concentration of phenolic compounds than the CPF, mainly phenolic acids (protocatechuic, chlorogenic, and gallic acids), followed by flavonoids, particularly quercetin derivatives. Caffeine was found in higher concentrations than phenolic compounds. The antioxidant capacity was increased throughout the digestive process. The coffee pulp matrix influenced phytochemicals' behavior during gastrointestinal digestion. Whereas individual phenolic compounds generally decreased during digestion, caffeine remained stable. Then, phenolic acids and caffeine were highly bioaccessible, while flavonoids were mainly degraded. As a result, caffeine and protocatechuic acid were the main compounds absorbed in the intestine after digestion. Non-absorbed phenolic compounds might undergo colonic biotransformation yielding small and potentially more adsorbable phenolic metabolites. These results contribute to establishing the coffee pulp as an antioxidant food ingredient since it contains bioaccessible and potentially bioavailable phytochemicals with potential health-promoting properties.

12.
Antioxidants (Basel) ; 11(8)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-36009190

RESUMO

Breast milk (BM) is the best food for newborns. Male sex is associated with a higher risk of fetal programming, prematurity, and adverse postnatal outcome, being that BM is an important health determinant. BM composition is dynamic and modified by several factors, including lactation period, prematurity, maternal nutritional status, and others. This study was designed to evaluate the influence of sex on BM composition during the first month of lactation, focused on macronutrients and antioxidants. Forty-eight breastfeeding women and their fifty-five newborns were recruited at the Hospital Clínico San Carlos (Madrid, Spain). Clinical sociodemographic data and anthropometric parameters were collected. BM samples were obtained at days 7, 14, and 28 of lactation to assess fat (Mojonnier method), protein (Bradford method), and biomarkers of oxidative status: total antioxidant capacity (ABTS and FRAP methods), thiol groups, reduced glutathione, superoxide dismutase and catalase activities, lipid peroxidation, and protein oxidation (spectrophotometric methods). Linear mixed models with random effects adjusted by maternal anthropometry, neonatal Z-scores at birth, and gestational age were used to assess the main effects of sex, lactation period, and their interaction. BM from mothers with male neonates exhibited significantly higher protein, ABTS, FRAP, and GSH levels, while catalase showed the opposite trend. No differences between sexes were observed in SOD, total thiols, and oxidative damage biomarkers. Most changes were observed on day 7 of lactation. Adjusted models demonstrated a significant association between male sex and proteins (ß = 2.70 ± 1.20; p-Value = 0.048). In addition, total antioxidant capacity by ABTS (ß = 0.11 ± 0.06) and GSH (ß = 1.82 ± 0.94) showed a positive trend near significance (p-Value = 0.056; p-Value = 0.064, respectively). In conclusion, transitional milk showed sex differences in composition with higher protein and GSH levels in males. This may represent an advantage in the immediate perinatal period, which may help to counteract the worse adaptation of males to adverse intrauterine environments and prematurity.

13.
Antioxidants (Basel) ; 11(4)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35453431

RESUMO

Cardiometabolic diseases are one of the leading causes of morbidity and mortality worldwide, and the beneficial effect of diets rich in fruits and vegetables is widely recognized [...].

14.
Front Nutr ; 9: 866233, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392289

RESUMO

Coffee by-products contain bioactive compounds that have been shown to have the capacity to modulate human metabolism. The goal of this study was to investigate the effects of the main bioactive compounds in coffee by-products and two aqueous extracts from the coffee husk and silverskin on the activation of fibroblast growth factor 21 (FGF21) signaling and the subsequent regulation of mitochondrial bioenergetics and lipid and glucose metabolism. HepG2 cells treated with palmitic acid (PA) were used in a non-alcoholic fatty liver disease (NAFLD) cell model. The bioactive compounds from coffee by-products (50 µmol L-1) and the aqueous extracts from the coffee silverskin and coffee husk (100 µg mL-1) increased ERK1/2 phosphorylation and the secretion of FGF21 (1.3 to 1.9-fold). Coffee by-products' bioactive compounds counteracted inflammation and PA-triggered lipotoxicity. Oxidative stress markers (ROS, mitochondrial superoxide, and NADPH oxidase) and the activity of antioxidant enzymes (superoxide dismutase and catalase) were modulated through the activation of Nrf2 signaling. Mitochondrial bioenergetics were regulated by enhancing respiration and ATP production via PGC-1α, and the expression of oxidative phosphorylation complexes increased. Coffee by-products' bioactive compounds decreased lipid accumulation (23-41%) and fatty acid synthase activity (32-65%) and triggered carnitine palmitoyltransferase-1 activity (1.3 to 1.7-fold) by activating AMPK and SREBP-1c pathways. The GLUT2 expression and glucose uptake were increased (58-111%), followed by a promoted glucokinase activity (55-122%), while glucose production and phosphoenolpyruvate carboxykinase activity were reduced due to IRS-1/Akt1 regulation. The bioactive compounds from coffee by-products, primarily chlorogenic and protocatechuic acids, could regulate hepatic mitochondrial function and lipid and glucose metabolism by activating FGF21 and related signaling cascades.

15.
Antioxidants (Basel) ; 11(2)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35204310

RESUMO

Cocoa has cardiovascular beneficial effects related to its content of antioxidant phytochemicals. Cocoa manufacturing produces large amounts of waste, but some by-products may be used as ingredients with health-promoting potential. We aimed to investigate the vasoactive actions of an extract from cocoa shell (CSE), a by-product containing theobromine (TH), caffeine (CAF) and protocatechuic acid (PCA) as major phytochemicals. In carotid and iliac arteries from 5-month and 15-month-old rats, we investigated CSE vasoactive properties, mechanism of action, and the capacity of CSE, TH, CAF and PCA to improve age-induced endothelial dysfunction. Vascular function was evaluated using isometric tension recording and superoxide anion production by dihydroethidium (DHE) staining and confocal microscopy. CSE caused endothelium-dependent vasorelaxation, blocked by L-NAME, but not indomethacin, regardless of sex, age, or vessel type. CSE maximal responses and EC50 were significantly lower compared to acetylcholine (ACh). Arterial preincubation with CSE, TH, CAF or PCA, significantly reduced the number of vascular DHE-positive cells. Compared to adult males, iliac arteries from aged males exhibited reduced ACh concentration-dependent vasodilatation but larger CSE responses. In iliac arteries from aged male and female rats, preincubation with 10-4 M CSE and PCA, but not TH or CAF, improved ACh-relaxations. In conclusion, CSE has vasodilatory properties associated with increased nitric oxide bioavailability, related to its antioxidant phytochemicals, being particularly relevant PCA. Therefore, CSE is a potential food ingredient for diseases related to endothelial dysfunction.

16.
Antioxidants (Basel) ; 11(1)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35052640

RESUMO

The cocoa shell is a by-product that may be revalorized as a source of bioactive compounds to prevent chronic cardiometabolic diseases. This study aimed to investigate the phytochemicals from the cocoa shell as targeted compounds for activating fibroblast growth factor 21 (FGF21) signaling and regulating non-alcoholic fatty liver disease (NAFLD)-related biomarkers linked to oxidative stress, mitochondrial function, and metabolism in hepatocytes. HepG2 cells treated with palmitic acid (PA, 500 µmol L-1) were used in an NAFLD cell model. Phytochemicals from the cocoa shell (50 µmol L-1) and an aqueous extract (CAE, 100 µg mL-1) enhanced ERK1/2 phosphorylation (1.7- to 3.3-fold) and FGF21 release (1.4- to 3.4-fold) via PPARα activation. Oxidative stress markers were reduced though Nrf-2 regulation. Mitochondrial function (mitochondrial respiration and ATP production) was protected by the PGC-1α pathway modulation. Cocoa shell phytochemicals reduced lipid accumulation (53-115%) and fatty acid synthase activity (59-93%) and prompted CPT-1 activity. Glucose uptake and glucokinase activity were enhanced, whereas glucose production and phosphoenolpyruvate carboxykinase activity were diminished. The increase in the phosphorylation of the insulin receptor, AKT, AMPKα, mTOR, and ERK1/2 conduced to the regulation of hepatic mitochondrial function and energy metabolism. For the first time, the cocoa shell phytochemicals are proved to modulate FGF21 signaling. Results demonstrate the in vitro preventive effect of the phytochemicals from the cocoa shell on NAFLD.

17.
Food Funct ; 12(14): 6309-6322, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34085683

RESUMO

This work is aimed to evaluate the nutritional composition, and the techno-functional and in vitro physiological properties of flours made using six different insect species and the sensorial feasibility of including them in bakery products. The insect flours exhibited high protein and fat contents as their main components, highlighting the presence of chitin in ant samples. The techno-functional properties showed high oil holding, swelling, and emulsifying capacities in all the analysed insect flours, whereas their bulk density, hydration properties, and foaming capacity showed average values and no gelation capacity. Moreover, these edible insect flours exhibited effective hyperglycaemia and hyperlipidaemia properties, which together with their high antioxidant capacity are associated with beneficial in vitro physiological effects. The beetle and caterpillar flours stand out in these properties, and thus were selected to make a cupcake. The sensory evaluation confirmed that the edible beetle powder can be successfully included in baked goods to provide excellent sensory properties and very high acceptance. Thus, these insect flours may be of great interest to the food industry as a healthy source of protein, exerting a positive impact on functional and sensory food properties, and with a potential role in the prevention of diseases associated with hyperglycaemia and hyperlipidaemia.


Assuntos
Insetos Comestíveis/química , Valor Nutritivo , Animais , Antioxidantes/química , Formigas/química , Quitina/análise , Besouros/química , Gorduras na Dieta/análise , Proteínas Alimentares/análise , Manipulação de Alimentos/métodos , Indústria Alimentícia/métodos , Gryllidae/química , Humanos , Lepidópteros/química , Locusta migratoria/química , Microscopia Eletrônica de Varredura/métodos , Mariposas/química , Tenebrio/química
18.
Foods ; 10(3)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808664

RESUMO

This study aimed to model and optimize a green sustainable extraction method of phenolic compounds from the coffee husk. Response surface methodology (RSM) and artificial neural networks (ANNs) were used to model the impact of extraction variables (temperature, time, acidity, and solid-to-liquid ratio) on the recovery of phenolic compounds. All responses were fitted to the RSM and ANN model, which revealed high estimation capabilities. The main factors affecting phenolic extraction were temperature, followed by solid-to-liquid ratio, and acidity. The optimal extraction conditions were 100 °C, 90 min, 0% citric acid, and 0.02 g coffee husk mL-1. Under these conditions, experimental values for total phenolic compounds, flavonoids, flavanols, proanthocyanidins, phenolic acids, o-diphenols, and in vitro antioxidant capacity matched with predicted ones, therefore, validating the model. The presence of chlorogenic, protocatechuic, caffeic, and gallic acids and kaemferol-3-O-galactoside was confirmed by UPLC-ESI-MS/MS. The phenolic aqueous extracts from the coffee husk could be used as sustainable food ingredients and nutraceutical products.

19.
J Clin Med ; 10(4)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578963

RESUMO

Cognitive maternal adaptation during pregnancy may influence biological variables, maternal psychological, and neonatal health. We hypothesized that pregnant women with numerous general resources and less negative emotions would have a better coping with a positive influence on neonatal birth weight and maternal psychological health. The study included 131 healthy pregnant women. A blood sample was obtained in the first trimester to assess biological variables (polyphenols, hematological and biochemical parameters). Psychological variables (negative affect, anxiety, optimism, resilience, family-work conflicts, pregnancy concerns, general resources, and life satisfaction) were evaluated at several time points along gestation, and birth weight was recorded. Hierarchical linear regression models were used to associate the above parameters with maternal psychological outcome at the end of gestation (depression, resilience, and optimism) and neonatal outcome (birth weight). Maternal depression was associated with leukocytes (ß = 0.08 ± 0.03, p-value = 0.003), cholesterol (ß = 0.01 ± 0.002, p-value = 0.026), and pregnancy concerns (ß = 0.31 ± 0.09, p-value = 0.001). Maternal resilience was associated with leukocytes (ß = -0.14 ± 0.09, p-value = 0.010) and life satisfaction (ß = 0.82 ± 0.08, p-value = 0.001), and maternal optimism was associated with polyphenol levels (ß = 0.002 ± 0.001, p-value = 0.018) and life satisfaction (ß = 0.49 ± 0.04, p-value = 0.001). Birth weight was associated with maternal resilience (ß = 370.2 ± 97.0, p-value = 0.001), red blood cells (ß = 480.3 ± 144.4, p-value = 0.001), and life satisfaction (ß = 423.3 ± 32.6, p-value = 0.001). We found associations between maternal psychological, blood variables, and birth weight and maternal depression. This study reveals the relevance of psychological health during pregnancy for maternal and neonatal outcome, and it emphasizes the need to consider it in preventive policies in the obstetric field.

20.
Food Funct ; 12(3): 1097-1110, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33427263

RESUMO

The dietary fibre and phenolic contents and the functional properties of extruded coffee parchment flour were studied to evaluate its possible use as an ingredient rich in dietary fibre (DF) with potential antioxidant, hypoglycaemic and hypolipidemic properties in extruded products. Coffee parchment flour treated at 160-175 °C and 25% moisture feed showed higher DF (84.3%) and phenolic contents (6.5 mg GAE per g) and antioxidant capacity (32.2 mg TE per g). The extrusion process favoured the release of phenolic compounds from the fibre matrix. Phytochemicals liberated during in vitro simulated digestion exhibited enhanced antioxidant capacity and attenuated reactive oxygen species in intestinal cells (IEC-6). However, the physicochemical and techno-functional properties were just affected by extrusion at high temperature, although extruded coffee parchment flours exhibited lower bulk density and higher swelling capacity than non-extruded ones. Extruded coffee parchment preserved the glucose adsorption capacity and enhanced the α-amylase in vitro inhibitory capacity (up to 81%). Moreover, extruded coffee parchment maintained the ability to delay glucose diffusion and exhibited improved capacity to retard starch digestion in the gastrointestinal tract. The extrusion of coffee parchment flours preserved the cholesterol-binding ability and augmented the capacity of this ingredient to bind bile salts, favouring the inhibition of pancreatic lipase by coffee parchment. These discoveries generate knowledge of the valorisation of coffee parchment as a food dietary fibre ingredient with antioxidant, hypoglycaemic, and hypolipidemic properties that are enhanced by the release of phenolic compounds from the fibre matrix through the production of extruded products.


Assuntos
Antioxidantes/farmacologia , Café/química , Manipulação de Alimentos , Resíduos Industriais , Animais , Antioxidantes/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Digestão , Células Epiteliais/efeitos dos fármacos , Glucose/química , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/metabolismo , Inibidores de Glicosídeo Hidrolases/farmacologia , Mucosa Intestinal , Compostos Fitoquímicos , Ratos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...